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Abstract-The focus of this paper is the calculation of sensitivities of stresses at an interphase
between a fiber and matrix, in a hexagonal cell of a fiber-reinforced composite, with respect to
interphase stiffnesses, and the use of these sensitivities to carry out optimal design of the interphase
stiffnesses, The interphase is modeled here as a spring layer. Sensitivities are of interest in the design
of composites since interphase properties can substantially affect the mechanical and thermal
behavior of a composite. The sensitivity calculations are carried out here by using the direct
differentiation approach (DDA) of the corresponding boundary element method (BEM) formu
lation of the problem. Optimization calculations are carried out by coupling the standard and
sensitivity analyses to an optimizer. The optimizer chosen here uses sequential quadratic pro
gramming to obtain the desired optimal values ofinterphase stiffnesses that minimize the possibility
of failure of a composite under prescribed loading.

Numerical results for sensitivities and optimization, for some illustrative examples, are
presented in this paper.

I. INTRODUCTION

The focus of this paper is a study of the effect of interphases, between a fiber and a matrix
in a composite material, on the stresses in the composite--both in the fiber and in the
matrix. An interphase is a thin interfacial zone, between a fiber and a matrix, across which
bonding between the two main phases of the composite takes place,

Interphase properties can substantially affect the mechanical and thermal behavior of
a composite-both during a thermal curing cycle and during use of a composite structure.
Such effects have been studied by several authors [e.g. Walpole (1978), Mikata and Taya
(1985a, b) and Ochiai and Osamura (1987)]. In related studies, two analytical models have
been considered. Broutman and Agarwal (1974), Theocaris et ai, (1985), Maurer et al.
(1986), Sideridis (1988), and Benveniste et al. (1989) have modeled the interphase as a thin
layer between a fiber (or an inclusion) and a matrix, with specified thickness and elastic
constants different from those of the fiber and the matrix. In reality, however, experimental
determination of such interphase properties is very difficult. An alternative spring layer
model has been employed by Lene and Leguillon (1982), Benveniste (1985), Aboudi (1987),
Stief and Hoysan (1987), Rashin (1990, 1991), and Achenbach and Zhu (1989, 1990). In
this model, it is assumed that the normal and tangential tractions are continuous across the
interphase (in order to satisfy equilibrium), but the displacements can suffer discontinuities
across the interphase. Such displacement jumps, when present, are proportional to their
associated traction components, with the proportionality constants characterizing the stiff
ness of the interphase. The actual thickness of an interphase layer is left unspecified in this
model. It should be mentioned here that Jasiuk and Tong (1989) have studied both the
above models.

An interphase can be a by-product of manufacture or it might be deliberately intro
duced. A coating on the reinforcing fibers is a common example. In a recent paper, Shieu
et al. (1990) have experimentally demonstrated that the shearing strength ofa metal ceramic
interphase (in this case for a NiO-Pt system) can be substantially increased by suitable heat
treatment. Depending on the choice of annealing temperature, time and oxygen partial
pressure, an interphase layer ofeither an intermetallic compound NiPt (of thickness between
1 and 65 nm) or a Ni-Pt solid solution can be produced. Compared to its originally hot
pressed state, the shearing strength of the NiO-Pt interface was increased by a factor of at
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least four by the presence of the NiPt and by about 10 by the solid solution. This is
remarkable considering the fact that the interphase layer is extremely thin in this case.

Studies such as the above by Shieu et al. (1990) raise intriguing questions and exciting
possibilities. Is it possible, for example, to tailor composite interphase properties such as
strength and stiffness to achieve desired objectives? A possible objective might be to minimize
the maximum residual tensile stress in the matrix of a metal matrix composite following a
thermal cycle. Such questions lie in the realm of inverse or design problems rather than
merely simulation of composite systems. Optimization techniques are often useful for obtain
ing rational solutions of such problems.

An optimization process typically starts from a preliminary design and calculation of
design sensitivity coefficients (DSCs) for this design. The DSCs are rates of change of
response quantities such as stress or displacement in a loaded body, with respect to design
variables. Design variables could be material parameters, boundary conditions or shape
parameters that control the shape of the body. An optimization algorithm [e.g. Vanderplaats
(1985)] uses nonlinear programming to start from the preliminary design and its sensitivities
to propose a new design. The goal is to optimize an objective function without violating
the constraints of a problem. This process is carried out in an iterative manner, producing
a succession of designs, until an optimal design is obtained. While optimization problems
for linear problems in continuum mechanics (e.g. linear elasticity) are fairly common.
those for nonlinear problems (e.g. elasto-viscoplastic) have only recently begun to attract
attention [e.g. Wei et al. (1993)].

The objective of this paper is to determine sensitivities of stresses in a composite
material with respect to interphase stiffnesses and then use these sensitivities in an opti
mization procedure to obtain the optimal values of these stiffnesses in certain cases.
Basically, three different approaches have been used in literature for the calculation of
DSCs-the finite difference approach (FDA), the adjoint structure approach (ASA) and
the direct differentiation approach (DDA). Also, both the finite element method (FEM)
and the boundary element method (BEM) have been used for these analyses by different
researchers. The FDA is the simplest approach and is based on the difference of two
neighboring solutions of a problem, one for a nominal and the other for a slightly perturbed
value of the design variable. This method, however, can be unreliable and should be used
with caution. It is shown later in this paper that, under certain circumstances, the FDA can
deliver totally erroneous results for DSCs for interphase tractions in composites, with
respect to interphase stiffness.

Attention is now focused on a very promising approach for obtaining the DSCs-the
DDA of the governing BEM equations of a problem. Here, the exact differentiation
eliminates errors that might occur from using finite differences and leads to closed form
integral equations for the desired sensitivities. These equations are then solved by numerical
discretization. This approach is very accurate and efficient. It has been employed to obtain
DSCs for linear elastic problems by various researchers, e.g. for planar (Barone and
Yang, 1988; Kane and Saigal, 1988; Choi and Choi, 1990; Zhang and Mukherjee, 1991),
axisymmetric (Saigal et al., 1989; Rice and Mukherjee, 1990) and three-dimensional
(Barone and Yang, 1989; Aithal et at., 1991) problems. Sensitivities for materially nonlinear
problems such as those involving elasto-viscoplasticity (Zhang et al., 1992a) and for fully
nonlinear problems such as large strain elasto-viscoplasticity (Zhang et al., 1992b) have
also been obtained using the DDA of the BEM equations.

On the optimization front, different methods, such as the steepest descent, quadratic
programming, sequential quadratic programming, etc. (Haftka et al., 1990) have been
employed by different researchers. The plan in this work is to use the DSCs obtained above,
with existing available optimization subroutines, to obtain illustrative optimal solutions.

The present work assumes a periodic configuration of fibers and calculations are
carried 'out on a basic cell. This cell contains a single fiber with surrounding matrix, and its
boundaries are subjected to appropriate tractions or displacements that are consistent with
the periodic structure of the composite and the far field loading. Such calculations have
been carried out for perfect bonds by Adams (1987) and Zywicz (1986) and for interphases
modeled as spring layers, by Achenbach and Zhu (1989) for rectangular, and Achenbach



Sensitivities in hexagonal cells 2011

and Zhu (1990) for hexagonal arrays. Achenbach and Zhu (1989) found that variations of
interphase parameters cause pronounced changes in the stress fields in the composite cell.
For the hexagonal array, Achenbach and Zhu (1990) found that the maximum circum
ferential stress, along the matrix side of the interphase, is strongly dependent on the
interphase stiffness and the fiber volume ratio.

The hexagonal array model, with an interphase in a unit cell described by a spring
layer (Achenbach and Zhu, 1990), is the starting point of the present work. A basic cell of
trapezoidal shape, subjected to a far-field uniform tensile stress in the closest packing
direction (CPD) or in the mid-closest packing direction (mid-CPD) is analysed by the
boundary element method (BEM). Next, sensitivities of stresses and displacements, with
respect to the interphase stiffnesses in the radial and tangential directions, are obtained by
using the DDA of the BEM. This approach follows that used earlier for isotropic linear
elastic problems by Zhang and Mukherjee (1991). Isoparametric, quadratic boundary
elements are employed for both the usual mechanics and the sensitivity problems in imple
menting the BEM.

The DDA of BEM results for the sensitivities are compared with those obtained from
finite differences of two neighboring BEM solutions, and generally show good agreement.
An interesting situation arises if the interphase configuration (defined by interphase nodes
at which the matrix and the fiber are in physical contact, and nodes that are separated by
the spring layer) undergoes a change due to a small increment in the stiffness. In such a
situation, the sensitivities with respect to interphase stiffnesses suffer jump discontinuities.
The present method (DDA of the BEM) delivers accurate solutions in such cases, whereas
the FDA approach can produce totally erroneous results.

The sensitivities of stresses, calculated as described above, are used in this paper to
carry out optimal design of the interphase stiffnesses for some examples. The central idea
here is to design interphase stiffnesses to minimize the possibility of failure of the composite
subjected to certain prescribed loading conditions. The optimization problems considered
here are of the min-max type in which the maximum value of a tensile stress component,
or a combination of these stress components, is minimized as a function of interphase
stiffnesses. The sequential quadratic programming algorithm, due to Schittkowski (1986),
available as the subroutine NOONF, available as a part of the fortran IMSL subroutine
library is used here to solve the optimization problems.

2. PROBLEM FORMULATION

Following Achenbach and Zhu (1990), Fig. I shows a periodic fiber reinforced com
posite with a unit hexagonal cell. The composite is subjected to a remote uniform stress (J 0

in the closest packing direction (CPD) which is labeled the global x direction. Each unit
hexagonal cell has sides b and each fiber is of radius a. Due to periodicity and symmetry,
only one quarter of the cell, ABCD needs to be considered here. Figure 2 shows the situation
for loading in the mid-CPD direction. Only the CPD direction is discussed below and the
reader should refer to Achenbach and Zhu (1990) for details of the mid-CPD case.

With the origin at the mid-point 0 of the side DC (Fig. I), the stress and displacement
boundary conditions around the trapezoid are

AB: fl = 0, Uz = Cz,

BC: fz = 0, Ul = Ct/2,

DA: fZ = 0, Ul = -Ct/2,

(I)

(2)

(3)

DC:
{

Ul( -x, - y) = -UI(X, y),

uz( -x, - y) = -uz(x, y),

f)(-X, -y) = fl(X, y),

fz( -x, - y) = fz(X, y),

(4)
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Fig. 1. (a) Hexagonal array subjected to far-field uniform tensile stress in CPD, (b) basic cell,
(c) quarter region of basic cell, and (d) trapezoidal domain for numerical calculations.

(5)

(6)

where Uj and ';' i = 1,2 are the components of the displacement and traction vectors,
respectively, and C 1 and C2 are (as yet) unknown constants.

Interphase conditions, with respect to local polar co-ordinates rand (), centered at A,
are of the form (the outward normal to a region at a point on its boundary is taken to be
positive)

(7)

(8)

(9)
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Fig. 2. (a) Hexagonal array subjected to far-field unifonn tensile stress in mid-CPD, (b) basic cell,
(c) quarter region of basic cell, and (d) trapezoidal domain for numerical calculations.

where the superscripts m and frefer to the matrix and the fiber, respectively, and kr and ko
are the stiffnesses ofthe interphase in the rand 0 directions. Equation (7) refers to separation
and (8) to contact between a point on the fiber and the corresponding point on the matrix.

3. INTEGRAL EQUATIONS FOR THE MECHANICS PROBLEM

Following Rizzo (1967), boundary integral equations are written separately for the
matrix and the fiber in the trapezoidal region ABCD of Fig. 1. For the matrix,

Cij(p)ur)(p) = f [Uii)(P, Q)rr)(Q) - Tii)(P, Q)uJm)(Q)] dsQ ,
oB,uaB2

PEoBt UoB2, (10)

where mil and Tii) are the well-known Kelvin kernels for plane strain problems [see, for
example, Mukherjee (1982)], for the matrix, and Cij is the comer tensor. Also, P and Q are
the source and fIeld points, respectively, and aBI = GB+BC+CD+DHand oB2 = HG in
Fig. 1.

Similarly, for the fiber,

Cu(P)uJf)(P) = f [ui)l(P, Q)rJo(Q) - Ti?(P, Q)uJo(Q)] dsQ ,
aB2uaB3

PEoB2 UoB3 , (11)

where oB3 = HA +AG in Fig. I.
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4. EQUAnONS FOR THE SENSITIVITY PROBLEM

The design variables here are the interphase stiffnesses k, and ko. Sensitivity of a
depencient variable 4J with respect to k, is denoted as 4J* and sensitivity with respect to kll

is denoted as 4Jo, i.e.

4J* = 64J.
6kr'

(12)

Differentiating eqns (1)-(6) with respect to k,., one gets,

AB: rf = 0, u~ = C~,

BC: r~ = 0, uf = Ct!2,

DA: r~ = 0, uf = -Ct!2,

(13)

(14)

(I 5)

DC:
{

ur( -x, -y.) = -ur(x, y),
ur(-x, -y) = -u!(x, y),

rr( -x, - y) = rr(x, y),

r!( -x, -y) = rr(x, y),

[ rf(s) ds = 0,
)BC+CO

i r~(s) ds = O.
CD

(16)

(17)

(18)

Interphase sensitivity equations are obtained by differentiating eqns (7)-(9) with respect to
k,. These are

(20)

(21)

Finally, the boundary integral equations (lO) and (II) must be differentiated with respect
to k, to give

C;j(p)u;*fml(p) =f [V}7l (P, Q)r;*fml(Q)- T}jl(p, Q)urm)(Q)] dsQ ,
iJB,UiJB2

(22)

Cij(P)ur<f)(P) = r [Vl?(P, Q)1:;*(f)(Q) - n?(p, Q)U/(fl(Q)] dsQ ,
Jao 2 uaB,

(23)

It should be noted that the differentiations are implicit as well as explicit with respect
to k,. Also, if shape sensitivities (e.g. with respect to volume fraction) are considered, then
one must also differentiate the kernels Vij and Tij and the length element ds with respect to
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appropriate parameters that define the boundary of the body. Such issues are discussed, in
detail, in Zhang and Mukherjee (1991).

Similar equations can easily be derived for sensitivities with respect to k(/. Equations
(13)-(18) and (22), (23) remain unchanged except for the * being replaced by the 0.

Interphase equations (19)-(21) must now be replaced by

(25)

(26)

5. NUMERICAL IMPLEMENTAnON

Numerical implementation of the BEM equations, using quadratic isoparametric
boundary elements, is carried out in standard fashion [see, for example, Mukherjee (1982)
and Brebbia and Dominguez (1992)]. The latter book (Brebbia and Dominguez, 1992) also
lists computer routines for such numerical implementations involving standard elasticity
problems. For the mechanics problem, each of the equations (10) and (11) are suitably
discretized. The boundary interphase equations (1)-(9) are employed. Corners on the
trapezoid in the two regions (points A, G, B, C, D and H in Fig. I) are modeled by putting
double nodes at each corner.

All integrations are carried out numerically. The logarithmically singular kernel Uij is
integrated by log weighted Gaussian integration. The O(I/r) singular kernel, T;j is integrated
indirectly by using rigid body modes and writing the integral over a singular element
(together with the corner tensor, Cij), in terms of regular integrals of Tij over the test of
the boundary [see, for example, Mukherjee (1982) and Brebbia and Dominguez (1992)].

An additional complication arises from the contact equations (7)-(9). Initially, eqn
(7) is assumed to apply at all interphase nodes. If G~:.") = G~~ at any interphase node(s) is
negative, eqn (8) replaces eqn (7) at those nodes and the calculation is repeated. This
procedure finally converges to the correct solution. The sensitivity calculations are carried
out in a manner entirely analogous to the mechanics problem.

For the numerical calculations, the material properties chosen are (Achenbach and
Zhu,1990)

jJ.(rn) = 14.4 Msi (9.79 x 104 MPa), vern) = 0.22,

jJ.(f) = 30.0 Msi (2.07 x lOs MPa), v(f) = 0.30,

where jJ. and v are the shear modulus and Poisson's ratio, of each material, respectively.
The above values of the physical constants are typical of metal fiber-ceramic composites,
for example, copper alloy fibers in a tungsten carbide matrix (Weeton et al., 1987).

Assuming a fiber volume fraction Vr = 0.4, one gets,

b (5n )1/2a= 3)3 = 1.7387.

The nondimensional tractions, stresses and interphase stiffnesses are defined as,

• 1:;
T;=-,

Go

k ak,
, = jJ.(rn)'

so that the nondimensional sensitivities are
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a~ = (,!(O~)T* a~~ = (J.1
aa

(m

o

))T7
ak, aao l' Kf,

The interphase stiffnesses k r and k() depend upon the shear and bulk moduli of
the interphase material and the thickness of the interphase. There is considerable un
certainty, at present, in these values for physical composite systems. A nominal value of
kr = ko = 1/14.4 = 0.0694 has been used in some of the calculations presented in the next
section of this paper. Different values have been used for the results presented in the section
on jump discontinuities in sensitivities. These values are given in the appropriate subsection.

6. NUMERICAL RESULTS

6.1. Sensitivities of fiber tractions at the interface
The first example is concerned with the calculations of sensitivities of tractions T~m)

and T~m) with respect to the interphase stiffnesses k r and ko. These base values are
k, = ko = 0.0694.

Results for afr/ak" as a function of position (angle) around a quarter of the fiber
(anticlockwise positive) for the CPD cases, are given in Table 1. Also given are the results
from the finite difference of two BEM solutions with 11k, = 0.01k, and I1kr = O.OOlk"
respectively, and the state of contact of each interphase node with a 0 indicating no contact
and 1 indicating contact. The sensitivity results are seen to agree very well in all cases.

Figures 3~6 display the quantities air/ak" aio/alC" air/ako, afo/ako, respectively, for the
CPD case, as a function of the angle measured around a quarter of the fiber, while Figs 7-
10 display the same quantities for the mid-CPD case. The base values are the same as those
for Table 1. Again, the BEM and FDM (with 1% perturbation of the appropriate stiffness)
results agree perfectly within plotting accuracy. The state of each boundary node with
respect to contact is also shown in these figures.

An interesting result is that, for all the cases involving Tr (Figs 3, 5, 7 and 9), the
sensitivities, in general, are small and relatively uniform at points in the interphase where
the matrix and the fiber are not in contact, compared to those that are in contact. This
result is somewhat surprising because k, is inactive at points of contact. Of course, the
results at contact points are affected by changes in k, at other points.

6.2. Jumps in traction sensitivities
A very interesting question is related to the behavior of traction sensitivities at values

of stiffnesses where the interphase configuration (in terms of points in contact) changes due

Table 1. Sensitivities of f, with respect to k, for the CPD case with base values of k, and k"
equal to 0.0694

Angle

o
10
20
30
40
50
60
70
80
88
90

Contact
condition

o
o
o
o
o
o
o
I
1
I
1

BEM
sensitivities

-0.7816
- 0.7449
-0.7271
-0.6473
-0.3686
-0.7105
-0.3908

1.7986
0.1166

- 1.9858
1.2256

I%FDM
sensitivities

-0.7891
-0.7446
-0.7258
--0.6451
-0.3686
-0.7102
-0.3907

1.8000
0.1166

-1.9872
1.2384

0.1% FDM
sensitivities

-0.7838
-0.7446
-0.7272
-0.6466
-0.3686
--0.7113
-0.3917

1.7986
0.1166

-1.9872
1.2384
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Fig. 3. Sensitivities of T, with respect to k, for the CPD case with base values of k, and koequal to
0.0694.

to a small change in the stiffness. In such a situation, the sensitivity at an interphase point
might become discontinuous. Such a situation is schematically depicted in Fig. 11. Let P
be such a point of sensitivity discontinuity and P I and P2 be neighboring points on either
side of it.

A numerical calculation has been carried out for kr1 = 0.5378 at point PI and
kr2 = (1.01)(0.5378) = 0.5432 at P 2• The value of k8 has been kept fixed at 0.6944. The
following results have been obtained:

(1) The sensitivities Ofr/ok" from the BEM program, at points PI and P 2•

(2) Results from the backward and forward FDMs, with a 1% perturbation in k" with
the base value equal to kr I'

no contact .... ......contact

·0.Q1

'"lU......
:E -0.02...
'r;;
=lU
til

-0.03

-0.04 I-x=1
10 20 30 40 50 50 70 80 90

Angle

Fig. 4. Sensitivities of To with respect to k, for the CPD case with base values of k, and koequal to
0.0694.
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Fig. 5. Sensitivities of f, with respect to ko for the CPD case with base values of Ii., and koequal to
0.0694.

(3) Same as case (2) but with base value of k r2 •

The results are shown in Tables 2 and 3, for base values krl and k r2 , respectively. The
BEM results show the expected jump in sensitivities due to the node at () = 90°, changing
from no contact at kr1 to contact at kr2 • The jumps are larger at points near the node at
() = 90° than those at points far away from it. As expected, the backward FDM works fine
at krb while the forward FDM, oblivious to the change in interphase configuration, gives
completely erroneous results. The reverse is true at kr2 as seen from the Table 3 (see also
Fig. 11). This example shows that while the BEM results, based on analytical differentiation
of the governing equations, are reliable, the FDM results can be totally wrong if atten
tion is not paid to a change in the system configuration due to a perturbation in a stiffness
value.

O~--+-----n-o-c-o-nt-..-ct-..""';"':..-c-on-t-ac-,-t-----i

o 10 20 30 40 50 60 70 80 90
Angle

Fig. 6. Sensitivities of f o with respect to ko for the CPD case with base values of kr and koequal to
0.0694.
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no contact ~ .....contact
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Fig. 7. Sensitivities of T, with respect to k, for the mid-CPD case with base values ofk, and koequal
to 0.0694.

6.3. Sensitivities of tangential stresses in the matrix at an interphase
Tangential stresses in the matrix, at an interface are very important quantities, since

large tensile tangential stresses can cause fracture of the matrix. The sensitivities of these
stresses with respect to kr and k8, in dimensionless form (Le. Ot188\OKr and 0t188\OK8), as
functions of 0, are shown in Figs 12 and 13, respectively. These results are for the CPD
case. The base values of the geometrical and physical quantities are the same as those used
for Figs 3-10. Again, the BEM results agree well with those obtained by the finite differences
of the BEM solutions.

Figures 3, 4 and 12 show the sensitivities of the three components of the stress, at the
interface, with respect to k" while Figs 5, 6 and 13 show the sensitivities of the same
quantities with respect to k8• A comparison of Figs 3, 4 and 12 shows that the radial and

l-x:o~1

-0.03

-0.04

01--------_-----,---------1

'".~....
:E -0.02
~

'"=QI
rn

-0.01

o 10 20 30 40 50 60 70 90
Angle

Fig. 8. Sensitivities of To with respect to k, for the mid-CPD case with base values ofk, and koequal
to 0.0694.
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rr~,,---'-'-',,~,r-r,,,',,-,-,'-',,-,r-r,-'-"-r'-,r-r,-'-'-'-'~,~r-,~I-,---,-~

,I [x ~~J
I

I
-5 r-
l

no contact ..... -+contact
~
I, ,I" I,! [ ! ! , ! I !" I

10 20 30 40 50 60 70 60 90
Angle

Fig. 9. Sensitivities of i, with respect to f ofor the mid-CPD case with base values of k, and koequal
to 0.0694.

tangential stresses are more sensitive to kr as compared to the shearing stress (Jre. Similarly,
a comparison of Figs 5, 6 and 13 shows that (Jrr and (Jee are most sensitive to ke, although
the maxima are attained at different locations around the fiber. As mentioned before, the
sensitivities of (Jee are of most concern in design because large tensile hoop stresses could
lead to matrix failure.

6.4. Optimization of interphase stiffnesses
Standard mechanics analysis, together with sensitivity analysis, is used in conjunction

with nonlinear programming [in this case sequential quadratic programming-Schittkowski
(1986)] to carry out optimal design of interphase stiffnesses. As stated before, the IMSL
subroutine NOONF is used to perform the optimization. The necessary gradients required

I I I I

r

0.5 x

no contact ~ -l'contact

10 20 30 40 50 60 70 80 90
Angle

Fig. 10. Sensitivities of i o with respect to f o for the mid-CPD case with base values of k, and k"
equal to 0.0694.
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Fig. II. Schematic representation of dependence of interphase traction on interphase stiffness. The
interphase configuration undergoes a change at point P.
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for every iteration by this subroutine are provided by the sensitivity analysis. The overall
approach used in this case is illustrated in the flowchart shown in Fig. 14.

The central idea in this phase of the work is to design interphase stiffnesses to minimize
the possibility of failure of the composite subjected to a prescribed loading. Failure can
occur at the interphase (debonding), in the matrix or in a fiber. To incorporate such an
optimization criterion, one can choose among various failure criteria involving quantities

Table 2. Sensitivities off, with respect to k, for the CPD case with k, = 0.5378 and ko = 0.6944

Backward Forward
Contact BEM I%FDM 0.1% FDM

Angle condition sensitivities sensitivities sensitivities

0 0 -0.4260 -0.4269 0.4381
10 0 -0.3788 -0.3796 0.5071
20 0 -0.3581 -0.3589 0.6174
30 0 -0.3056 -0.3063 0.7496
40 0 -0.1540 -0.1545 0.5441
50 0 -0.3365 -0.3376 -0.0937
60 0 -0.2119 -0.2129 -1.0095
70 0 -0.1303 -0.1311 -1.5165
80 I 0.7207 0.7232 -43.6641
88 I -0.7238 -0.7250 -163.5637
90 I 0.5259 0.5277 910.3122

Table 3. Sensitivities off, with respect tok, for the CPDcase with k, = 0.5432 and ko = 0.0694

Backward Forward
Contact BEM I%FDM 0.1% FDM

Angle condition sensitivities sensitivities sensitivities

0 0 -0.4183 0.4380 -0.4177
10 0 -0.3710 0.5071 -0.3703
20 0 -0.3496 0.6173 -0.3587
30 0 -0.2963 0.7496 -0.2955
40 0 -0.1475 0.5441 -0.1469
50 0 -0.3332 -0.0937 -0.3321
60 0 -0.2172 -1.0095 -0.2161
70 0 -0.1410 -1.5165 -0.1403
80 I 0.7478 -43.6641 0.7479
88 I -0.5933 -163.5637 0.5928
90 0 -0.2342 910.3122 -0.2342

SAS 30115-0
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Fig. 12. Sensitivities of Boo with respect to k, for the CPD case with base values of k, and koequal
to 0.0694.

such as strain energy, distortion energy, maximum principal tensile stress, maximum shear
ing stress, etc. The precise choice of such a criterion, however is quite subjective, especially
in view of the somewhat uncertain nature of the interphase. It is important to emphasize,
however, that the optimization approach described here is general and would work, in
principle, for any choice of a failure criterion.

A somewhat simplistic view is taken in the illustrative examples that follow. It is clear
that large values of (tensile) radial or shearing stresses at an interphase can cause debonding
failure of the interphase while large tensile hoop stresses in a ceramic matrix could lead to
its cracking and eventually failure. Whether failure occurs in the matrix, fiber or the
interphase depends upon many factors including the loading and relative strengths of the
different components ofa composite. With this in view, one can choose an objective function
of the type

J
i

I , I

no contact 'I- -+contact

I i I I

I ! I • , I , ! I ,I 1 ,I ,I
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Fig. 13. Sensitivities of Boo with respect to ko for the CPD case with base values of k, and koequal
to 0.0694.
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Fig. 14. Optimal design algorithm.

(27)

with (1" ~ 0, (100 ~ 0, which is the maximum value of a linear combination of, say (1" in the
interphase and (100 in the matrix at an interface, with the weightings IX and p reflecting the
relative strengths of the interphase and matrix materials, respectively. If, for example,
the interphase were very weak relative to the matrix, one would choose IX = 1 and p= 0
in eqn (27).

Two illustrative examples for the CPO case are described below.

Example 1.' Minimize (</» where </> = max. (arr ) in the interphase, subject to the constraints

(1) urr ~ 0,

(2) 0.694 ~ kr ~ 34.72,

(3) 0.694 ~ ko~ 34.72,

where kr and ko are the design variables. The above range for kr and ko corresponds to
minimum and maximum values of 10 Msi (6.80 x 104 MPa) and 50 Msi (34 x 104 MPa),
respectively.

The results of successive iterations, from the optimizatio~ procedure, are shown in
Table 4. It is seen that the optimal values of the design variables for this problem are, as
expected, the minimum values for kr and kowithin the specified range of these variables.

Example 2.' Minimize (</» where </> = max. (arr +a99), the maximum value of </> being taken
over the interface. Here, (1rr is the nondimensionalized stress in the interphase while a99 is
the hoop stress in the matrix at the interface. The constraints chosen here are
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Fig. 15. c/> = max (6,,+600) (Example 2), as a function ofk (solid line). Values of successive iterations
are shown with crosses.

(1) &rr~O,

(2) 0'011 ~ 0,

(3) k, = ko = k,

(4) 0.694 ~ k ~ 34.72.

The third constraint is chosen here to simplify the analysis, but can be relaxed if desired.
Figure 15 shows ¢ as a function of k. For 0.694 ~ k ~ koPt ' the maximum value of

O'rr +O'08 occurs at the angular location () = 700
, while, for kopt ~ k ~ 34.72, the location of

the maximum value shifts to () = 00
• The optimal value of k in this case, is 1.908 which

occurs when ¢o=o" equals ¢O~70' Values of ¢ for successive iterations from the optimizer

Table 4. Successive iterations for the optimization problem
c/> = max (6,,) in the interphase

Iteration k, ko c/>

I 3.000 2.000 0.6713
2 0.694 1.113 0.4061
3 2.663 1.870 0.5935
4 0.694 0.694 0.3432

Table 5. Successive iterations for the optimization prob
lem c/> = max (6,,+600 ) on the interface

Iteration k c/>

I 10.000 3.5671
2 9.955 3.5630
3 9.729 3.5425
4 8.581 3.4328
5 2.359 2.6253
6 0.694 4.5569
7 2.193 2.5984
8 0.694 4.5569
9 2.043 2.5742

10 0.694 4.5569
II 1.908 2.5659
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are shown in Table 5. In this case, 11 iterations are needed to converge to the optimal value
ofk.

7. CONCLUSIONS

An important question related to the design of composite materials has been raised in
this paper-is it possible to tailor the composite interphase properties such as strength or
stiffness in order to achieve desired objectives? A first crucial step towards this objective is
the efficient and accurate calculation of the appropriate design sensitivities. A calculation
of sensitivities of stresses at the interphase, with respect to interphase stiffnesses, has been
carried out here. It is shown that the DDA of the governing BEM equations of the problem
provide an accurate and efficient way to carry out these calculations. The FDM approach,
while easier to employ, can give totally erroneous results in cases where a sensitivity suffers
a jump discontinuity.

Next, the use of these sensitivities in an optimization procedure is demonstrated
through two illustrative examples. Optimal values of interphase stiffness, to minimize the
possibility offailure ofa composite under prescribed loading, are obtained in these examples.
Of future interest is the calculation of sensitivities of residual stresses in a matrix material
which is modeled as elasto-plastic. Research along these lines is currently in progress.
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